A Singular-Perturbation Analysis of the Burning-Rate Eigenvalue for a Two-Temperature Model of Deflagrations in Confined Porous Energetic Materials

نویسندگان

  • Stephen B. Margolis
  • Melvin R. Baer
چکیده

Deflagrations in porous energetic materials are characterized by regions of two-phase flow, where, for sufEciently large flow velocities, temperature-nonequilibration effects can significantly affect the overaI1 burning rate. In the present work, we analyze a two-temperature model of defiagrations in confined porous propellants that exhibit a bubbling melt layer at their surfaces. For appropriately scaled rates of interphase heat transfer, the problem reduces to a nontrivial eigenvalue calculation in the thin reaction region where final conversion of the liquid to gaseous products occurs. For realistically small values of the ratio of gas-to-liquid thermal conductivity, solutions in the reaction zone take on a singular-perturbation character that can be exploited to derive an asymptotic expansion of the burning-rate eigenvalue. The resulting problem requires a , rather sophisticated application of techniques in matched asymptotic expansions stemming from the appearance of an infinite number of logarithmic terms in the asymptotic development that must . be summed to arrive at the desired level of approximation. The physical effects of temperature nonequilibrium, which decreases the rate of heat transfer from the reacting liquid phase to the gas-phase products and thus allows a greater amount of thermal energy to remain in the reacting phase, is to increase the burning rate relative to the singl~temperature limit and to sharpen the transition from “conductive” to “convective” burning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation Solutions for the Study of MHD Blood as a Third Grade Nanofluid Transporting Gold Nanoparticles through a Porous Channel

In this paper, the flow, thermal and concentration analyses of blood as a third grade with gold as nanoparticles through a porous channel are carried out using regular perturbation method. The analysis are carried out using Vogel’s model of temperature-dependent viscosity. The developed models were used to investigate the effects of the nano particles on the concentration, temperature and veloc...

متن کامل

A Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size

The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...

متن کامل

A NOVEL HOMOTOPY PERTURBATION METHOD: KOUROSH´S METHOD FOR A THERMAL BOUNDARY LAYER IN A SATURATED POROUS MEDIUM

this paper a novel homotopy perturbation method has been presented for forced convection boundary layer problems in a porous medium. Noting the infinite condition, a homotopy form which is similar to the singular perturbation form has been considered. The inner and outer solutions have been achieved and the coincidence of the results has been investigated with a proper matching method. The resu...

متن کامل

Non-Darcian Mixed Convection Flow in Vertical Composite Channels with Hybrid Boundary Conditions

In this article, the effects of viscous dissipation and inertial force on the velocity and temperature distributions of the mixed convection laminar flow in a vertical channel partly filled with a saturated porous medium have been studied. In this regard, the Brinkman–Forchheimer extended Darcy model was adopted for the fluid flow in the porous region. In addition, three different viscous dissi...

متن کامل

COMBUSTION PERFORMANCE OF Ni-COATED AND UNCOATED HIGH ENERGETIC ALUMINUM NANOPARTICLES

High energetic aluminum nanoparticles are mainly used as additive in solid rocket propellants. However, fabrication of these aluminized energetic materials is associated with decreasing the burning rate of propellants due to problems such as oxidation and agglomeration of nanoparticles. In this study, to improve combustion performance of aluminum nanoparticles, coating by metallic Ni shell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2001